Email:ceo@lianyun.wang
预期目标:到2025年,训练芯片支持FP16、FP32和混合精度(FP16/FP32)处理能力,内存容量达到128GB及以上,单芯片FP16达到500 TFLOPS以上,支持结构化稀疏后FP16算力达1 PFLOPS以上。片间互联带宽达到300 GB/s以上,支持智能服务器单机内部全互联。高效支持可信计算、隐私计算或联邦学习等功能,提升基于硬件的安全性。
(二)智能算力集群
揭榜任务:攻克人工智能集群计算领域中总线互联、RAS技术、功耗散热等瓶颈,加强智能服务器与智能芯片、操作系统、开发框架、应用软件的兼容适配。建设大型智能算力集群,通过液冷等方式满足绿色化需求。开发配套云端运维管理和调度系统,满足大规模人工智能训练/推理要求。
预期目标:到2025年,智能算力集群节点扩展规模不低于1024卡,与国内外主流人工智能软硬件环境完成兼容适配;总体算力规模超过500 PFLOPS,PUE不超过1.25。开发支持低响应时延、动态扩展等特性的集群云端运维管理和调度系统,针对基于Transformer的重点模型具备分钟级断点续训能力。
(三)高质量数据集
揭榜任务:建设大规模通用中文语料库,加强主流中英文数据的清洗及过滤,构建标准化语料资源池,整合文字、图片、音视频等多模态数据集,并实现对外开放。打造高质量代码、书籍、人类反馈指令数据、科学文献等专业知识数据集。面向工业、医药、电信、金融、教育等重点行业汇聚高质量、权威的行业训练数据资源,赋能行业发展。
预期目标:到2025年,实现通用文本数据集规模总量达到10TB、通用图文数据集数据总量达到1亿对、通用音视频数据集数据总量达到100TB。面向编程代码、科研文献、百科教材等专业知识,以及工业、医药、电信、金融、教育等重点行业,形成不少于3个高质量数据集,各数据集赋能10个及以上专用模型训练或微调。
(四)人工智能风险管控软件
揭榜任务:针对人工智能训练数据投毒、算法模型漏洞、敏感有害生成内容等重点风险,研发多维度一体化的人工智能风险管控软件产品。构建人工智能安全风险测评数据集,提出相应安全风险的检测、防御方法,支持人工智能应用服务、中间件与基础依赖组件等对象的漏洞检测与及时预警,识别生成内容潜在偏见歧视、伦理、违规违法等风险。
预期目标:到2025年,构建3个人工智能安全风险测评数据集,覆盖偏见歧视、违规违法、恶意指令注入、伦理等多维度安全风险,提出不少于10种面向人工智能数据安全风险的检测、防御方法,组织不少于5个典型智能产品开展试点验证工作。