5的量子纠错及单比特逻辑门操作,或者颜色码方案完成码距≥3的量子纠错及单比特逻辑门操作。
(三)抗量子计算密码通用芯片架构
揭榜任务:围绕抗量子计算密码中算法特性、数据处理逻辑、侧信道攻击防护等需求,研究基于格/模格上的容错学习问题和容错学习加密算法的侧信道攻击防护技术,突破共性高效运算模块等抗量子计算密码底层关键技术。完成适用于抗量子计算密码范式的格/模格密码通用芯片架构设计。
预期目标:到2026年,突破基于自主可控IP的抗量子密码芯片关键技术,原型芯片实现40nm及以下工艺平台验证;支持格、哈希、编码、同源等主流抗量子计算密码路径基础运算,可通过软件算法库与硬件原型芯片的协同实现10种以上抗量子密码算法的构造,签名性能不低于200次/秒。
二、重点产品
(一)大冷量稀释制冷机
揭榜任务:面向大规模超导量子计算对更大冷量、更大空间稀释制冷机的迫切需求,攻克稀释制冷机脉管制冷、热开关、极低温烧结换热、恒温器、气体处理系统、测控系统、器件有效互联及高效率热交换等技术难点,研制下一代大冷量、大功率、可互联稀释制冷机,提供保障数百到上千比特超导量子芯片运行的极低温环境。
预期目标:到2026年,研制满足容纳超过1000量子比特的大冷量、可互联稀释制冷机,可装载线缆数≥4000条,混合室冷盘面积≥1.6㎡;稳定实现空载最低温≤12mk,空载100mk制冷功率≥3000μW;多台设备互联门接口温区从mK级到300K全覆盖。
(二)可编程光量子处理芯片
揭榜任务:面向实用化光量子计算的大规模扩展需求,研究能解决具体实际问题的专用及通用光量子芯片。开展大规模片上综合集成技术研究,基于铌酸锂基、硅基、III-V族、氮化硅等多种非线性量子材料体系,研发混合异质集成、高效频率转换、低损耗传输、高速信号读取、器件干扰隔离等关键技术,实现芯片上高速光量子态调控和超低时间抖动单光子探测。
预期目标:到2026年,实现两种或两种以上材料的异质集成。制备出高性能器件单元,单端耦合损耗≤2dB,片上干涉仪消光比≥30dB,调制速率≥10GHz。实现多种结构的单光子以及多光子制备操纵单元,集成器件数≥30,单比特门保真度≥0.95,两比特门保真度≥0.9。
(三)多体系算力量子操作系统
揭榜任务:面向多体系量子计算机融合计算需求,研发适配多技术路线的量子操作系统。研发量子异构算力资源管理系统、基于量子计算任务特征驱动的量子异构算力调度系统、含噪声的中型量子计算任务高效编译与执行系统、面向量子异构算力的分布式量子计算和量子多线程异步并行计算方法。