预期目标:到2026年,支持不少于4种体系量子计算机,适配≥2000量子比特的量子计算算力,每秒电路层操作数CLOPS≥50000;实现大规模量子线路的超高速编译,100个量子比特、50000层深度线路的编译时间≤1s;实现同时调用至少3种量子异构算力,并行执行量子计算任务数≥5。
(四)量子绝对重力仪
揭榜任务:面向高时空分辨地球物理绝对重力网场景,突破低噪声高功率拉曼激光制备、低噪声原子干涉信号探测、宽频段振动抑制和补偿技术,研制小型集成化、光纤化的量子绝对重力仪,在地震监测、地质测绘等领域联合相关机构开展重力组网连续观测及流动重力勘查示范应用,获取区域性重力时变信息。
预期目标:到2026年,研制量子绝对重力仪产品可支持定点连续和流动重力测量应用。室内测量灵敏度≤15µGal/Hz1/2,定点测量误差≤2µGal,30天连续运行率≥98%且连续运行零点漂移≤3µGal。产品体积≤0.25m3,流动测量误差≤10µGal,部署时间≤2小时。
(五)碳监测光量子雷达
揭榜任务:面向双碳战略中的碳排放和碳计量及远距离管网泄漏检测的应用需求,开展甲烷、二氧化碳气体红外单光子差分吸收算法、红外高效率量子探测器高效率低后脉冲优化及甲烷、二氧化碳光量子雷达集成技术等方面的研究,突破高速双波长切换光纤窄线宽激光器技术、超稳光频稳频技术、红外高效低噪的量子探测技术,实现远距离甲烷、二氧化碳气体浓度分布式监测的光量子雷达设备。
预期目标:到2026年,研发基于1654nm单台双路吸收的甲烷、二氧化碳遥感光量子雷达,系统常规探测半径不低于2km,距离分辨率不高于60米,时间分辨率优于60s,单点的甲烷、二氧化碳浓度测量精度优于5ppm,在工业园区等场景通过长期外场浓度监测测试。
(六)芯片级分子时钟
揭榜任务:面向定位导航授时、通信基站、航空航天、低空组网、水下分布式探测等领域电子设备对高精度、高稳定、适合大规模部署的新型时钟应用需求,开展多类型分子旋转谱物理特性、长稳与短稳协同、新型芯片级分子时钟架构等核心技术研究,提升新一代芯片级分子时钟性能,突破芯片级分子钟批量制造工程和核心工艺技术,解决现有高精度时钟成本昂贵、可靠性差等问题。
预期目标:到2026年,完成芯片级分子时钟规模化生产。时钟频率稳定性≤1×10-11@103s,重量≤0.2kg,冷启动时间≤20s,具备综合性能优势和成本优势,在定位导航授时、通信基站、航空航天或低空组网等典型场景中完成验证。